

Midpoint Presentation Wind Energy - 13 By:

Ahmad Saeed - Technical Analysis and CAD/Main Frame

Abdulrahman Alossaimi - Project Manager / Control Theory / Blade design

Fahad Almutairi - Budget Liaison / Website Developer

Michele Tsosie - Blades design / secretarial support

Besongnsi Ntoung - project Manager /Position: Technical Analyst and Researcher

Project description

1. Client: David Willy.

- 2. To design and build a fully functional and efficient wind turbine.
- 3. Guidelines based off of the Collegiate Wind Competition.
 - 4. Limited to 45 by 45 by 45cm.

Updates

- Got approval from client about brakes, generator and we ordered them.
- We changed our design.
- Changed the nacelle from close to open nacelle.

New design

3 Ahmad, Wind Energy - 13, July/11/2018

Fin design

4 Ahmad, Wind Energy - 13, July/11/2018

Blade (old design)

- 68 Iterations of airfoils all at 11 m/s.
- Blade Design NACA 2414, 6409, and 4414 (Qblade software).

Abdul, Wind Energy - 13, July/11/2018

5

Blade (new design)

- NACA 2414 chosen airfoil.
- Power and Thrust Evaluated.
- Power 11 Watts.
- Thrust 10 Newtons.

6 Michele, Wind Energy - 13, July/11/2018

Blade Design (new design)

- Qblade design transferred into solidworks.
- Purpose is to 3D print at the Rapid Lab.
- Mate the part to the entire parts assembly.
- 3D printing in Maker Lab.
- Comparison in quality.

Nacelle Design

- The first design was a covered nacelle to protect the components, such as: generator, brake, and shaft.
- Steel flat bar.
- New CAD of the nacelle drawing.

Shaft update

- By calculation, the first design was 18 mm diameter with 30 CM length.
- Shaft Has to touch generator, brakes system and blades.
- New shaft is 10 mm diameter with 20 cm length.
- Shaft will handle many forces like radial force, thrust force and moment.

Figure 1: Shaft Adapter [1]

Updates

What is left in the manufacturing of the design?

- Brake disk \$2.36
- Linear actuator \$12.20
- Toweryaw
- 10 Be, Wind Energy 13, July/11/2018

Moving forward

Manufacturing:

- NAU machine shop Order for base flange, tower beam, nacelle yaw and nacelle.
- Braking system Wind team 13 (Electrical devising and assembly).
- Rotor Wind team 13 (Blades and hub) will be 3D printed.
- What's left shaft, generator and wiring will be assembled by wind team 13.

Design Testing:

• Two Methods - Theoretical and experimental methods.

Experimental

- 253L lab Deflection, stress and strain test (tower, base flange & shaft).
- Digital multimeter tester (Voltage).

Theoretical - FEA, CAD and Analytical Calculations

Wind turbine Analytical Analyses:

Solidworks:

- Calculated mass of 9280.87, Volume of 1181072.60 cubic millimeters and Surface area of 279442.71 square millimeter.
- The center of mass in the X,Y and Z direction are 264.05 mm, 374.56 mm and 574.40 mm respectively.

Mathematical Calculations:

- Thrust 20 N 44 N.
- Brakes Clamping force 40 N 88 N (F.S.=2).
- Bearings Load capacity greater than (C_10 >= 6 KN for shaft) and (C_10 >=10 kN for toweryaw).

Bill of Materials

BILL	OF MATERIAL	S (BON	N)																	
ITEM I	N Material	Purchase	QTY.	COST PRICE	Manufacturer	Description	Part Number	Website												
	1 Brakes	Х	1	\$35.00	king motor	stainless steel / carbon pads		https://m	.ebay.com	/itm/NEV	/-KING-M	OTOR-Br	ake-Hard	vare-HPI-	BAJA-5B-	SS-5T-5S	C-Compa	tible-GB9	/312092	464877
	2 Shaft	Х	1	\$38.76	master carr	stainless steel rod		https://w	ww.mcma	ster.com/#	precision-	hafts/=1dj	ipt2							
	3 Generator	Х	1	\$45.24	Turnigy power system	HD 3508 Brushless Gimbal	9244000018	https://ho	bbyking.c	om/en_us	/turnigy-h	l-3508-bru	shless-gim	bal-motor-	bldc.html					
				COLORED A																
	4 Welding	Х	1/2	\$90.00/hr.	Artisan Metal Works	Welding and Metal Fabrication	XXXXX	http://ww	ww.artisanr	netalwork	<u>s.net/</u>									
1	5 Turning	Х	1/2	\$90.00/hr.	Artisan Metal Works	Turning of metal pipe	XXXXX	http://ww	vw.artisanr	metalwork	<u>s.net/</u>									
	6 Milling	Х	1/2	\$90.00/hr.	Artisan Metal Works	Milling of raw metal	XXXXX	http://ww	vw.artisanr	netalwork	<u>s.net/</u>									
	7 Aluminum 6061-T6	Х	1	\$32.00/sheet	Metals Depot	0.04 " thick metal sheet 4x3 ft	S3040-6061	https://w	ww.metals	depot.con	n/aluminu	m-products	/6061-alu	minum-she	et-plate					
	8 CD Steel	Х	1	\$6.60/2ft.	Metals Depot	3/8' by 3/4' HR A36 Steel Rolled fla	F23834	https://w	ww.metals	sdepot.co	<u>m</u>									
1	9 Blades	Х	3	\$3.38	Maker Lab - Cline	PLA 3D printing		https://na	au.edu/libr	ary/										
- 10	0 Blades	Х	3		Rapid Lab - Fab Lab	3D printing		https://na	au.edu/cef	ns/engine	ering/med	nanical/res	earch-and	labs/labs-f	acilities/en	gineering-	fabrication	-lab-(mach	ine-shop),	
11 Hollow Steel Pip		Х	1	\$0	Metals Depot	HR A36 Hollow Steel	XXXXX	https://w	ww.metals	depot.co	m									
		TOTAL PR	RICE	\$295.98																
	RAW MATERIAL																			
	SUB-ASSEMBLED																			
	MANUFACTURE		-																	
	MANUTACIONE																			

14 Fahad, Wind Energy - 13, July/11/2018

Gantt Chart

ACTIVITY	Begin Date	End Date	Assigned To	PERCENT COMPLETI
Final Proposal	6/2/2018	6/6/2018	Team	100%
Website Check 1	6/7/2018	6/13/2018	Fahad	100%
HR1 Summary and Peer Eval 1	6/14/2018	6/20/2018	Team	100%
Individual Analysis II	6/21/2018	6/27/2018	Individually	100%
Midpoint Report	6/28/2018	7/4/2018	Team	100%
HR2 Summary and Peer Eval 2	7/5/2018	7/11/2018	Team	100%
Drafts of poster and operation	7/12/2019	7/19/2019	Team	70%
Website Check 2	7/19/2018	7/25/2018	Fahad	40%
Final Postor and Operation manual	7/26/2018	8/1/2018	Team	20%
Final Report, Website, Peer Eval 3 and CAD				35%
Package	8/2/2018	8/7/2018	Team	

15 Fahad, Wind Energy - 13, July/11/2018

Hardware Review 2

Figure 2: Generator [1]

- Calculations verified by client
- Blade selection evaluated
- Numerical values acceptable in reference to previous Wind Teams from client
- Material suggested from previous Wind Teams

Hardware Review 2

- 1. Wind energy created by blade rotation
- 2. Mechanical energy wind energy converted to mechanical by the rotation of shaft component
- 3. Generator shaft turns the generator and converts the mechanical to electrical
- 4. Fin regulates the direction of the blades to stay perpendicular to the wind.

Figure 3: Wind Turbine [2]

References

[1] HobbyKing. [Online]. Available.

https://hobbyking.com/en_us/turnigy-hd-3508-brushless-gimbal-motor-bld c.html

[2] Offshore Wind energy Production. 2017. [Online]. Available. http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ wind_energy.html

Thank you, Any Questions?

